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We present ab initio calculations of the band structure of graphene and of short zigzag graphene nanoribbons
(ZGNRs) by the screened-exchange-local-density approximation (LDA) method within the framework of den-
sity functional theory. The inclusion of nonlocal electron-electron interactions in this approach results in a
renormalization of the electronic band structure and the Fermi velocity compared to calculations within LDA
gives good agreement with experiment. Similarly, the band gaps in ZGNRs are widened by more than 200%,
being of similar magnitude than band gaps from past studies based on quasiparticle band structures. We found
a noticeable effect of nonlocal exchange on the spin polarization of the electronic ground state of ZGNRs,
compared to LDA and generalized gradient approximation calculations.

DOI: 10.1103/PhysRevB.82.125406
I. INTRODUCTION

Since the first successful preparation of free-standing
graphene, an isolated layer of graphite, in 2004,' a consider-
able amount of both theoretical and experimental work have
been employed on investigations of its unique physical prop-
erties. Graphene is a zero-gap semiconductor where the 7
valence band and the 7" conduction band contact at the six
Dirac points in the hexagonal graphene Brillouin zone. A
peculiar property of graphene is the linear dispersion E
=hvplk| (vp is the Fermi velocity) of the 7 bands near the K
points, resulting in effectively massless Dirac fermions.’
This property, predicted theoretically and confirmed experi-
mentally, is appealing for theoretical scientists, as it allows,
in principle, to study relativistic Dirac fermions by methods
from condensed-matter physics. Similarly, the outstanding
electronical properties turn graphene and its related materi-
als, such as carbon nanotubes and graphene nanoribbons, to
promising materials for application in nanoelectronics. For
this reason, a thorough understanding of the electronic prop-
erties of graphene materials is significant.

A common and efficient method for the study of ground-
state properties in condensed-matter physics are ab initio
density functional theory calculations within the local-
density approximation (LDA) or generalized gradient ap-
proximation (GGA). Whereas those approaches, in all their
simplicity, usually yield good results for structural properties
they routinely underestimate electronical properties, e.g.,
band gaps. Recent reports of experimental studies of charge
carrier dynamics in graphene by use of angle-resolved pho-
toemission spectroscopy (ARPES),>* IR measurements,’
magnetotransport measurements,® scanning tunneling mi-
croscopy (STM),” and cyclotron resonance scans,® revealed
that common density functional theory calculations severely
underestimate the Fermi velocity by 15-20 %. This was at-
tributed to prominent many-body effects in graphene such as
nonlocal electron-electron and electron-phonon interaction,
which are not accounted for in the LDA framework and lead
to a renormalization of the Fermi velocity. Similarly, calcu-
lations within LDA underestimate the band-gap sizes in both
armchair and zigzag graphene nanoribbons (ZGNRs) (Ref. 9)
by 50-75 %, bad performances even for LDA calculations
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on semiconductors. Several authors have reported that self-
energy corrections of the LDA band structures using many-
body GyW, approximations can amend the shortcomings of
LDA. For the Fermi velocity, those corrections yield values
that are in good agreement with experimental results.!%-!3
However, while quasiparticle corrections produce accurate
results, the considerable computational effort here is an un-
deniable disadvantage.

There are several attempts to improve on the shortcom-
ings of LDA by including nonlocal expressions directly in
the exchange-correlation functional. In case of the screened-
exchange-LDA (sX-LDA) approximation, the electron-
correlation functional is modeled by a blend of LDA and a
statically screened Hartree-Fock exact exchange potential in
order to account for electron-electron interactions to some
extend but retaining the advantages of LDA.'*-1® An obvious
advantage of this method is the lowered computational costs
compared to GW, which permits self-consistent solution of
the Kohn-Sham equations within sX-LDA and the calcula-
tions of total energy and charge and spin densities. Further, it
has been shown that the screened-exchange method indeed is
successful in describing the band gaps of various materials
with accuracy comparable to GoW,.!”-!3

Motivated by that success, we want to use this paper to
report calculations on the band structure of graphene and
zigzag graphene nanoribbons employing sX-LDA. We found
that the calculated renormalization of the Fermi velocity in
graphene due to electron-electron interactions compares well
with experimental values and the ones from quasiparticle
corrections.!®!13 Further, we show that the nonlocal exchange
has a considerable effect on the spin polarization and the
electronic band structures of zigzag nanoribbons, which
again compare well with quasiparticle band structures.'”

II. METHOD

Our study of the electronic band structures of graphene
and zigzag graphene nanoribbons is based on pseudopoten-
tial density functional theory in the framework of the
screened-exchange-LDA approximation, LDA and GGA in
the Perdew-Wang description from 1991 (PW91), and was
performed by use of the computational package CASTEP.?
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FIG. 1. (Color online) Comparison of the band structure of graphene within the screened-exchange approximation with (a) the band
structure within the LDA and (b) the quasiparticle band structure from self-energy corrections within the GoW, approximation, which was

extracted from Ref. 11.

Graphene was modeled by the common two-atomic Wigner-
Seitz unit cell and periodic boundary conditions in the three
spatial directions. We found that a distance of 9.6 A between
the periodic images is sufficient to minimize interlayer inter-
actions and represent graphene as a two-dimensional crystal.
The action of the atomic core were described by standard
norm-conserving pseudopotentials,>! the valence electrons
by plane waves with a cutoff energy of 750 eV. Integrations
in the reciprocal space were done by a Monkhorst-Pack
grid?? of 9 X 9 X 1 equidistant points in the Brillouin zone of
graphene. We further optimized the atomic positions until the
maximum interatomic force were lower than 0.001 eV/A.
We modeled graphene nanoribbons by a rectangular unit cell
being continued periodically along the nanoribbon axis and
used an energy cutoff of 750 eV and a k-point grid of
1 X'1X9 points along the Brillouin zone. The cell dimen-
sions were chosen in a way to minimize interlayer interaction
between the periodic images and to maintain the calcula-
tional effort at the same time. As for graphene, we found that
a distance of 9.6 A between periodic images is a sufficient
compromise. The dangling bonds of the carbon atoms at the
nanoribbons edges were passivated with hydrogen atoms in
order to maintain the sp? hybridization. The geometries of all
nanoribbons were fully optimized.

III. RESULTS AND DISCUSSION
A. Band structure of graphene

We used these parameters to calculate the electronic band
structures of graphene using LDA, GGA, and sX-LDA.

Figure 1(a) compares the valence bands of graphene from
calculations within the local-density approximation and with
screened exchange. There is a visible renormalization of the
band structure due to the inclusion of nonlocal correlation
effects. Screened exchange results in a general shift of the
three valence o bands to lower energies and that is most
significant near the I" point. There, the two degenerate bands
from sX-LDA have energies of -5 eV compared to —=3.3 eV
from LDA. The conduction bands are not affected as much
from nonlocal exchange. This might correlate with studies by
Lee et al.,”® who argue that the improved band gaps from
screened-exchange-LDA functionals in the materials they
studied mainly originate from a marked downshift of the
valence bands. This lowered energy of the valence bands

compared to the Fermi energy results in a broadened band
gap by 1.7 eV at the I" point. The 7r bands from both calcu-
lated band structures coincide fairly well in the K-M part of
the Brillouin zone. In the I"-K and I'-M parts of the band
structure, the nonlocal electron interaction results in a visibly
increased slope for the sX-LDA 7 band in respect to the 7
band from LDA. This results in a renormalized Fermi veloc-

ity,
1 0E

=—— 1
Uf L ok (1)

in the linear part of the 7 bands from sX-LDA compared to
LDA. The Fermi velocity is a particularly interesting vari-
able in semiconductors and conductors, as it is comparable to
the velocity of the electrons that contribute to electric con-
duction. Table I shows a number of recently reported experi-
mental values for the Fermi velocity, which are between
1.0X10% and 1.1 X 10° m/s. For the band structure from
LDA, we found a Fermi velocity of 8.9 X 10° m/s, which
underestimates the reported experimental Fermi velocities by
11-19 % (depending on the experiment). Calculations
within the generalized gradient approximation yield the same
result, see Table I. In contrast, the steeper slope in the sX-
LDA band structure results in a Fermi velocity of 1.16
X 10° m/s, being in good agreement with the values from
magnetotransport’ and STM (Ref. 6) measurements.

TABLE 1. Ab initio and experimental values of the Fermi veloc-
ity in the linear valence bands of graphene.

Method Fermi velocity vy (m/s)
LDA 0.89 X 10°
GGA 0.88 X 10°
sX-LDA 1.16 X 10°
GoyW, (CD integration) (Ref. 11) 1.12x10°
GoW,(RPA+PP) (Ref. 12) 1.25%x10°

1.00.05 X 10°
1.02+0.01 x 10°
1.07+0.01 x 10°
1.1x10°
1.093 X 10°

Experiment (ARPES) (Ref. 4)
Experiment (IR) (Ref. 5)

Experiment (magnetotransport) (Ref. 7)
Experiment (STM) (Ref. 6)
Experiment (cyclotron) (Ref. 8)

125406-2



DENSITY FUNCTIONAL THEORY SCREENED-EXCHANGE...

(@)

04 AsX-LDA LDA yoos
- 2

E-E, (eV)

I Y

0 w3 2n/3

PHYSICAL REVIEW B 82, 125406 (2010)

20 T T T T T
18k —=— sX-LDA 3

1.6

—0-- GW (Ref. [13])

1 1
5 10 15 20 25
Nanoribbon width w (A)

FIG. 2. (Color online) (a) Edge bands of a small zigzag nanoribbon (six carbon atoms) from calculations employing screened-exchange
(solid lines) and local-density approximation (filled dots and broken lines). (b) Comparison of the band-gap sizes of zigzag nanoribbons of
various widths from sX-LDA (circles), LDA+GyW, (squares), and LDA (triangles) calculations. The GyW,, results were taken from Ref. 19.

Figure 1(b) shows the valence bands from calculations
within sX-LDA, together with quasiparticle energies at se-
lected k points from GyW, calculations by Trevisanutto et
al.' The GyW,, calculations build upon LDA wave functions
and have been performed by use of a contour-deformation
(CD) integration, which is known to provide the most accu-
rate results in GyW,, quasiparticle corrections. As with sX-
LDA, the correlation effects induce a shift of the three o
bands to lower energies but the downshift is considerably
weaker and of magnitude <1 eV. Unfortunately, the authors
did not report any data for the conduction-band energies. Lee
et al.,”® however, found that the improved band gaps from
GyW,, result from a strong upshift of the conduction bands.
The 7 band from sX-LDA shows a very good agreement
with the 7 band in the quasiparticle band structure, except
for deviations near the I' point. The value of the Fermi ve-
locity was reported to be 1.12X 10° m/s, i.e., only slightly
closer to experimental values than our result. This encour-
ages us to believe that the electronical properties of graphene
and graphene-based materials can be described in good ac-
curacy within the framework of the screened-exchange ap-
proximation.

B. Spin-induced band gaps in zigzag nanoribbons

The first investigations of the electronical structures of
graphene nanoribbons were based on simple zone-folding
arguments, neglecting effects from the nanoribbon edges. In
this approximation, one third of all nanoribbons with arm-
chair edges and all zigzag nanoribbons should be metallic or
zero-gap semiconductors,?*? similar to the situation in car-
bon nanotubes. More elaborate investigations employing
density functional theory predicted that the existence of a
large ratio of edge to “bulk” atoms in carbon nanoribbons
indeed has a prominent effect on the electronical structure.
For zigzag nanoribbons, the deciding factor is edge-localized
electron states, which possess a large density of states at the
Fermi energy. Using a Hubbard model, Fujita et al.** showed
that the resulting Fermi instability leads to the formation of
an antiferromagnetic ground state in monohydrogenated na-
noribbons in contrast to the dielectric graphene. This spin-
polarized ground state involves the opening of a direct band

gap as the system wants to lower the density of states near
the Fermi level and remove the instability.?®

Investigations employing LDA predict that the band-gap
size is lower than 0.5 eV for all zigzag nanoribbons and
scales antiproportionally with the nanoribbon width due to
the decrease in spin interaction between the atoms at oppo-
site edges.” It might be expected from this interaction that
nonlocal components of the electron exchange are of impor-
tance for the band-gap size and that LDA, neglecting nonlo-
cal exchange, is not sufficient to fully describe the electroni-
cal properties of =zigzag nanoribbons. Indeed, our
calculations exhibit marked changes in the band-gap size due
to the inclusion of nonlocal exchange. Figure 2(a) shows the
electron bands of the edge states of a small zigzag nanorib-
bon from LDA and sX-LDA calculations. While both band
structures qualitatively exhibit similar dispersion, the band
gap near k:zf is widened by more than 200% from a value
of 0.5 eV in LDA to 1.65 eV in sX-LDA. Our calculated
band-gap energies are comparable to those obtained from
GyW, quasiparticle corrections on LDA wave functions by
Yang et al.,”® see Fig. 2(b), but the quasiparticle band gaps
are consistently 0.2 eV larger than our values. Another study,
employing the B3LYP hybrid potential, reported for an
8-ZGNR (16 carbon atoms, w=~16 A) a band-gap size of
1.34 eV,?” compared to 1.02 eV from sX-LDA and 1.23 eV
from GyW,. So far, no experimental data exists for compari-
son of those calculated band-gap sizes with real values, how-
ever, the similar results from different nonlocal approaches
suggests that the small values from LDA are indeed a severe
underestimation of the real band-gap energies. There are two
different factors for the size of the band gap. One is the
quantum confinement, which induces an inversely propor-
tional width-dependent band-gap energies, the other is the
separation of the valence and the conduction band by forma-
tion of a spin-polarized ground state. To estimate the influ-
ence of the spins on the band-gap size, we fitted a function

_ A
Tw+A

Eq 2)
to the sX-LDA band-gap energies. A is the deviation length
from the ideal quantum confinement law Eg0<$ and is an
indicator for the effect of the spin interaction. A=9.3 A
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FIG. 3. (Color online) (a) Comparison of « spin momenta of a
4-ZGNR (eight atoms per unit cell) from calculations employing
LDA (red circles). (b) Graphical representation of the spin momenta
from (a) on the nanoribbon atoms. The ratio of the areas of the
circles representing the spin momenta is the same as the ratio be-
tween the absolute values of the momenta.

gives good agreement with our calculated values. Yang et al.
reported a value of A=16 A, which might imply a stronger
contribution of the interaction of the electrons with the sur-
rounding system in their GyW, calculations.

We obtained the spin polarization of the electronic ground
states of our investigated nanoribbons by optimization of the
atomic positions and the electronic spins. Starting from a
nonspin-polarized geometry, these optimizations resulted in
antiferromagnetic ground states all our calculations within
LDA, GGA-PWO1, and sX-LDA. Figure 3(a) shows the mo-
menta of the a-spin direction in case of a 4-ZGNR, a nanor-
ibbon with eight carbon atoms per unit cell. The ground state
from LDA calculations exhibits a comparatively weak spin
polarization, which is strongly localized at the nanoribbon
edges, see Fig. 3(b). The calculated spin momentum at the
edges is 0.097 and rapidly decreases to an almost negligible
value of 0.01% at the nanoribbon bulk atoms. This corre-
sponds to a decrease of 88% over the distance of second-
nearest neighbors. While the spin momenta from sX-LDA
still show a noticeable localization at the edges, the spin
polarization over the whole unit cell of the 4-ZGNR is more
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balanced. The spin momentum at the edges is 0.21%, more
than 2.5X the value from LDA, and decreases by 71% into
the nanoribbon bulk. As expected, GGA improves on the
magnetic properties of the material. We found that the spin
momenta from PWO91 are quite in between the values from
LDA and sX-LDA, falling from 0.15% at the edges down to
a value of 0.03#, i.e., a drop of about 80%. The same results
hold for the momenta of the B spins but from the opposite
edge and with negative values, and for wider nanoribbons. It
is evident from the degree of spin polarization and the
changed band-gap energies that the nonlocal component of
the electron exchange indeed has a significant effect on the
electronic properties of zigzag nanoribbons.

IV. CONCLUSION

In conclusion, we used the screened-exchange (sX-LDA)
approximation to calculate the electronic band structure of
graphene and zigzag graphene nanoribbons and compared
the results with the band structures from LDA and the qua-
siparticle band structures from the GyW, approach. The in-
troduced electron-electron interaction in sX-LDA leads to a
renormalization of the band structure and the Fermi velocity
in the linear part of the 7 band in graphene, as was found in
experiments and from GyW, calculations. We report that the
Fermi velocity from sX-LDA is comparable to the value
from GyW,, calculations and in good agreement with experi-
mental values. For zigzag nanoribbons, our calculations con-
firmed the significance of the nonlocal part of the electron
exchange interaction for the degree of spin polarization and
for the size of the spin-induced band gap in the electronic
band structure. The nonlocal exchange results in a larger
band gap compared with LDA and comparable to that from
GyW,. The spin momenta in the electronic ground state from
sX-LDA calculations are noticeably higher and more bal-
anced over the whole unit cell of graphene nanoribbons com-
pared to results from LDA and GGA-PWO91. As a result, we
are confident that the screened-exchange-LDA approach is a
useful alternative method for the study of electronic proper-
ties in graphene-related materials.
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